

Solid-State Structures

International Edition: DOI: 10.1002/anie.201605123 German Edition: DOI: 10.1002/ange.201605123

High-Pressure Synthesis of Manganese Oxyhydride with Partial Anion Order

Cedric Tassel, Yoshinori Goto, Daichi Watabe, Ya Tang, Honcheng Lu, Yoshinori Kuno, Fumitaka Takeiri, Takafumi Yamamoto, Craig M. Brown, James Hester, Yoji Kobayashi, and Hiroshi Kageyama*

Abstract: The high-pressure synthesis of a manganese oxyhydride LaSrMn $O_{3.3}H_{0.7}$ is reported. Neutron and X-ray Rietveld analyses showed that this compound adopts the K_2NiF_4 structure with hydride ions positioned exclusively at the equatorial site. This result makes a striking contrast to topochemical reductions of LaSrMnO₄ that result in only oxygendeficient phases down to LaSrMnO_{3.5}. This suggests that high H_2 pressure plays a key role in stabilizing the oxyhydride phase, offering an opportunity to synthesize other transitionmetal oxyhydrides. Magnetic susceptibility revealed a spinglass transition at 24 K that is due to competing ferromagnetic $(Mn^{2+}-Mn^{3+})$ and antiferromagnetic $(Mn^{2+}-Mn^2, Mn^{3+}-Mn^{3+})$ Mn^{3+}) interactions.

Over the past decades, transition-metal (TM) perovskitebased mixed-anion systems, such as oxynitrides and oxyhalides, have been intensively investigated with various novel phenomena, including a non-toxic pigment superconductor $La_{1-x}Sr_xTaO_{2-x}N_{1+x}$ a high $T_{\rm c}$ Ca_{2-x}Na_xCuO₂Cl₂, and a visible-light catalyst Sm₂Ti₂O₅S₂.^[1-3] TM oxyhydrides are a relatively new class of mixed-anion systems. LaSrCoO₃H_{0.7} was the first example, reported in 2002,^[4] which was followed by $Sr_3Co_2O_{4.33}H_{0.84}$.^[5] These compounds were prepared by a topochemical reaction of n = 1 and 2 Ruddlesden–Popper (RP) perovskite oxides using CaH_2 . Subsequently, $ATiO_{3-x}H_x$ (A = Ba, Sr, Ca) and $Sr_{n+1}V_nO_{2n+1}H_n$ $(n=1, 2, \infty)$ were obtained from ATiO₃ and $Sr_{n+1}V_nO_{3n}$. [6] More recently, a high-pressure (HP) reaction has been shown as an alternate approach to access TM oxyhydrides. SrCrO₂H and Sr₂VO_{4-x}H_x were stabilized by reacting a mixture of binary oxides and hydrides under 5 GPa.^[7,8] Interestingly, the cobalt and vanadium oxyhydrides display H/O ordering, which is however absent in the chromium and titanium cases. The origin of anion (H/O) order-disorder has been discussed but not yet fully under-

The TM oxyhydrides exhibit remarkable properties. First, LaSrCoO₃H_{0.7}, SrCrO₂H, and SrVO₂H exhibit magnetic order far above room temperature (RT),[4,7,9] which is rationalized in LaSrCoO₃H_{0.7} by strong hybridizations between Co 3d e_{σ} and H1s orbitals, and in SrCrO2H by relieved octahedral tilting (vesrus isoelectronic $ACr^{3+}O_3$). The high T_N in $SrVO_2H$ is surprising, given the orthogonality of V 3d t_{2g} and H 1s orbitals, and calls for further investigations. Second, titanium oxyhydrides show a metallic conductivity with carrier density widely tuned by H⁻ content.^[10] The last but not least is high mobility of hydride ions in LaSrCoO₃H_{0.7}^[11] and an H/D exchangeability of BaTiO_{2.4}H_{0.6} with D₂ gas, [6a] both occurring at moderate temperatures.

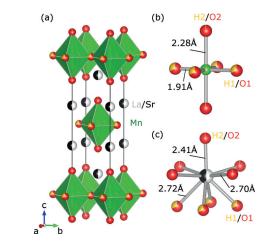
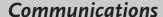
So far, only four TMs (Cr, Co, Ti, V) are known to afford oxyhydrides, a fact which significantly limits our understanding and rationalization of their stability, structures, and functions. Herein, we present the HP synthesis of a manganese analogue LaSrMnO_{4-x}H_x ($x \approx 0.7$) with an n = 1 RP perovskite (K₂NiF₄) structure (Figure 1a). Its structure, stability, and physical properties are discussed and compared with CaH_2 -reduced $LaAMnO_{4-\delta}$ phases (A = Sr, Ba). [12] We also argue H/O order-disorder in comparison with other mixedanion compounds.

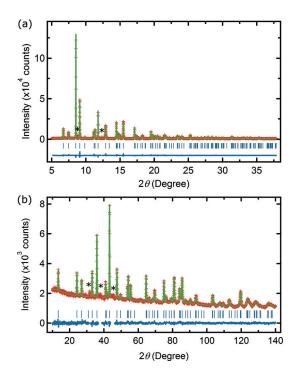
For the synthesis of LaSrMnO_{4-x}H_x, we varied temperature (900–1100 °C), pressure (< 5 GPa), and molar ratio of

[*] Dr. C. Tassel, Y. Goto, D. Watabe, Dr. H. Lu, Y. Kuno, F. Takeiri, Dr. T. Yamamoto, Dr. Y. Kobayashi, Prof. H. Kageyama Graduate School of Engineering, Kyoto University 615-8510, Kyoto (Japan) E-mail: kage@scl.kyoto-u.ac.jp Dr. C. M. Brown Center for Neutron Research National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899 (USA) Dr. J. Hester Bragg Institute Australian Nuclear Science and Technology Organization (ANSTO)

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: http://dx.doi.org/10.1002/anie.201605123.

Locked Bag 2001, Kirrawee, DC NSW 2232 (Australia)

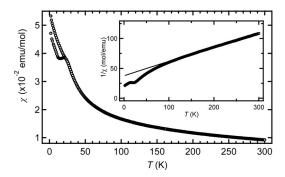




Figure 1. a) LaSrMnO_{3,3}H_{0,7} structure; b), c) coordination geometry around Mn (b) and La/Sr (c).

starting reagents. In appropriate conditions, we found a bodycentered tetragonal phase ($a \approx 3.82$ Å, $c \approx 13.19$ Å) along with impurities. The impurity amount was minimized when reacted at 1000 °C and 5 GPa with La₂O₃:SrO:SrH₂:MnO:Mn₂O₃=1:1:0.9:1.1:1.4:0.3. As shown in Figure 2, the synchrotron X-ray diffraction

Figure 2. Rietveld refinement of a) SXRD and b) ND for LaSrM- $nO_{3,3}H_{0,7}$. The red crosses and green and blue curves indicate the observed, calculated, and difference data. Green ticks are the calculated position of Bragg peaks. Asterisks indicate reflections from unknown impurity.

(SXRD) and neutron diffraction (ND) patterns at RT was readily indexed with the K₂NiF₄ structure (I4/mmm) with cell parameters close to LaSrMnO $_4$. [13] The K_2NiF_4 structure was thus employed for Rietveld refinements with La/Sr at 4e, Mn at 2a, O1 at 4c, and O2 at 4e. We could not detect sizable amount of vacancy or hydrogen at the apical O2 site from ND/SXRD, while SXRD analysis on the equatorial O1 site occupancy showed the vacancies giving LaSrMnO_{3.552(32)}. However, ND analysis based on the anion vacancy model gave an incoherent composition LaSrMnO_{2,90(3)} with an extremely low Mn valence of +0.80. As the quadrupole mass spectrometry (Supporting Information, Figure S1) showed a release of large amount of hydrogen above 150°C, H was added at O1 where H/O atoms are randomly distributed at O1. This led to a consistent stoichiometry of LaSrMnO_{3.3}H_{0.7}. The sample prepared in a different condition (having larger amount of impurities) also gave the identical composition (Supporting Information, Figure S2 Table S2).


As shown in Figure 1b, the $Mn(H,O)_4O_2$ octahedron is stretched with shorter equatorial Mn–O1/H1 bonds (1.9 Å) and longer apical Mn–O2 bonds (2.3 Å) along the c axis. The Mn–O2/Mn–O1 ratio of 1.2 is similar to those of

LaSrMn^{2,34+}O_{3,67}, LaSrMn²⁺O_{3,5}, and LaSrMn³⁺O₄,^[13] implying that the Jahn–Teller (JT) effect of Mn³⁺ is not a main origin of octahedral distortion. We also observed anisotropic peak broadening that may emerge from strains along a and b (see structural analysis in Supporting Information), possibly arising from randomly distributed short Mn–H and long Mn–O bonds.

It is noteworthy that low-temperature CaH_2 reactions of LaSrMnO₄ at 420 °C and 480 °C yield only oxygen-deficient phases, LaSrMnO_{3.67} and LaSrMnO_{3.5}, respectively. The manganese valence of +2.3 in LaSrMnO_{3.5}, is close to LaSrMnO_{3.67}, but is higher than LaSrMn²⁺O_{3.5}, implying superiority of CaH_2 reduction in terms of yielding compounds with a smaller valence. Even more remarkable is the fact that only HP condition gives an oxyhydride, instead of oxide. We consider HP reaction can avoid decomposition SrH_2 to Sr and SrH_2 , while allowing incorporation of SrH_2 in the optimized reaction (10%) generates a high SrH_2 gas pressure and helps in forming the oxyhydride.

A number of topochemical reactions using metal hydrides (CaH₂, NaH, LiH) have been reported. [14] In most cases, they lead to highly reduced oxides, rather than oxyhydrides. The present result indicates that reduced oxides accessible by topochemical hydride reactions are good candidates for a direct HP reaction to yield oxyhydrides. It is interesting to revisit, for example, $\text{La}_{1-x}\text{Ca}_x\text{MnO}_{2+\delta}$ and $4\text{H-BaMnO}_{2+\delta}$, [15,16] with the HP method. A topochemical reaction of oxides with CaH₂ under high (H₂) pressure will be an alternative strategy. Interestingly, anion vacancies in LaSrMnO_{3.67} and LaSrMnO_{3.5} are present only within the MnO₂ layers, suggesting that if an oxyhydride is allowed to form, the H⁻ site is predictable from its oxygen-deficient phase.

The magnetic susceptibility of LaSrMnO_{3.3}H_{0.7} (Figure 3) is fitted with the Curie–Weiss formula, $\chi = C/(T-\theta) + \chi_0$, where C, θ , and χ_0 denote the Curie constant, the Weiss temperature and a constant term, giving $C=3.88-(6)~{\rm emu\,K\,mol^{-1}},~~\theta = -149(3)~{\rm K}~~{\rm and}~~\chi_0 = 5.8(8)\times 10^{-4}~{\rm emu\,mol^{-1}}.$ The effective moment of $\mu_{\rm eff} = 5.57~\mu_{\rm B}$ agrees well with the theoretical value (5.63 $\mu_{\rm B}$). The θ value indicates strong antiferromagnetic interactions. A deviation from the Curie–Weiss law below 80 K signifies development of short-range spin correlations. Despite the large $|\theta|$, the susceptibility keeps increasing with temperature, until it

 $\label{eq:figure 3.} \textbf{Figure 3.} \ \ \text{Magnetic susceptibility of LaSrMnO}_{3.3} H_{0.7}. \ \ \text{Inset: inverse susceptibility and the Curie-Weiss fit (black line)}.$

Communications

exhibits a kink at 22 K (in ZFC process). However, ND data at 6 K (Supporting Information, Figure S3) lacks magnetic reflections, suggesting a spin glass state below $T_{\rm SG}=22$ K. A deviation between ZFC and FC processes at $T_{\rm SG}$ is consistent with the spin glass nature. The AC susceptibility (Supporting Information, Figure S4) displays a frequency (ω) variation of transition temperature $(T_{\rm f})$, with ω fitted by $\omega=\omega_0\propto (T_{\rm f}/T_{\rm SG}-1)^{zv}.^{[17]}$ The relaxation time $\tau_0(=2\pi/\omega_0)$ of 3.99(9) \times 10^{-11} s and the dynamical critical exponent zv of 7.3(2) are typical for oxide spin glasses. $^{[18]}$

The spin glass transition in our compound suggests strong spin frustration. The frustration index f, defined by $|\theta|/T_{SG}$, is as large as 6.0. In A₂MO₄ systems, predominant magnetic interactions are the nearest-neighbor and next-nearest-neighbor interactions, J_1 and J_2 , in the MO₂ square lattice. The latter interaction is usually much weaker when M-O-M angle is close to 180° as in the present case. Thus, the competition between J_1 and J_2 is not the origin of spin frustration. We propose that the spin frustration originates from the mixed valence of Mn²⁺ (d⁵) and Mn³⁺ (d⁴). According to the Goodenough-Kanamori rule, $^{[19]}$ J_{1a} via $\mathrm{Mn^{2+}\text{-}Mn^{2+}}$ and J_{1b} via Mn^{3+} – Mn^{3+} are antiferromagnetic, while J_{1c} via Mn^{2+} – Mn³⁺ is ferromagnetic. The mixed interactions induce frustration within the MnX₂ layer and the resultant spin glass transition. Interestingly, an oxygen-deficient LaSrMnO_{3,67} with a similar Mn valence of +2.34 has $\theta = -258$ K and $T_{\rm SG} = 60-75 \,\mathrm{K}$, giving a smaller f of 4.3.^[12] This implies enhanced frustration in our material with a greater ferromagnetic contribution. Inequivalent Mn-O-Mn and Mn-H-Mn bonds for each J_{1i} (i = a, b, c) may also account for the enhanced frustration. In fact, Mn2+TaO2N has a larger f of 9.2^[20] than the isostructural oxide $Mn^{2+}TiO_3$ with f=6, [21] resulting in different spin structures.

The utmost feature in LaSrMnO_{3.3}H_{0.7} is the selected occupation of H- ions in the perovskite layer. There are numerous studies on anion order/disorder in perovskitebased mixed-anion systems.^[21] For instance, SrTaO₂N has a preference of cis-TaO₄N₂ octahedra, leading to a novel anion order. [22] In SrVO₂H, the JT effect gives trans-VO₄H₂ octahedra and the infinite-layer structure results.^[9] Unlike ABO₃, the pristine A₂BO₄ affords two distinct crystallographic oxygen sites: the axial O2 site surrounded by five A and one B atoms and the equatorial O1 site surrounded by four A and two B atoms. Since the A cation in A₂BO₃X is in general more electropositive, there is a tendency that a more/ less electronegative anion occupies the O1/O2 site. [20,21] Such anion order is often encountered in oxyfluorides with F- at the axial site (Sr₂CoO₃F, Sr₂NiO₃F), [24,25] in oxynitrides with N³⁻ at the equatorial site (Sr₂TaO₃N, Sr₂NbO₃N), [23,26] though few exceptions like Nd₂AlO₃N exist.^[27] Given the electronegativity of H (2.2), H⁻ is likely to occupy the O1 site, which is what has been observed previously in Sr₂VO₃H,^[9] LaSr- $CoO_3H_{0.7}$,^[4] and now in LaSrMnO_{3.3}H_{0.7}.

Using Pauling's electrostatic valence rule, [28] Fuertes et al. have demonstrated a predictability of the anion order from refined structural data on RP perovskite oxynitrides and oxyhalides (F, Cl, Br). [22c, 23] Here, the valence of the anion site approximately matches the bond strength sum b at O1 (4× A–O and 2×B–O) and O2 (5×A–O and 1×B–O) defined as

 $b_{\rm O1}=4z_{\rm A}/v_{\rm A}+2z_{\rm B}/v_{\rm B}$ and $b_{\rm O2}=5z_{\rm A}/v_{\rm A}+z_{\rm B}/v_{\rm B}$ (z= formal valence, v= coordination number). Sr₂TaO₃N and Sr₂CoO₃F have ($b_{\rm O1}, b_{\rm O2}$) = (2.56, 1.94) and (1.89, 1.61), implying the occupation of N/F at the O1/O2 site. Interestingly, this rule does not hold in oxyhydrides: Sr₂VO₃H (1.89, 1.61), LaSr-CoO₃H_{0.7} (1.68, 1.67), and LaSrMnO_{3.3}H_{0.7} (1.88, 1.77). The electronegativity of H may be too small to apply the principle based on the electrostatic arguments. Finally, given with a order–disorder transition at $\delta=0.7$ in Sr₂VO_{4– δ}H_{δ}, SlasrMnO_{4–x}H $_x$ with x>0.7 may induce in-plane anion order, which will be a future study and hopefully such efforts contribute to achieve a global understanding of anion order/disorder in oxyhydrides and more generally mixed-anion materials.

Acknowledgements

The authors thank Prof. O. Hernandez for discussions. This work was supported by Hakubi Project, Grant-in-Aid for the Young Scientist B, and CREST.

Keywords: anion order · mixed-anion compounds · oxyhydrides · Ruddlesden–Popper perovskites · solid-state structures

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 9667–9670 Angew. Chem. **2016**, 128, 9819–9822

- [1] M. Jansen, H. P. Letschert, Nature 2000, 404, 980.
- [2] Z. Hiroi, N. Kobayashi, M. Takano, Nature 1994, 371, 139.
- [3] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547.
- [4] M. A. Hayward, et al., Science 2002, 295, 1882.
- [5] R. M. Helps, N. H. Rees, M. A. Hayward, *Inorg. Chem.* 2010, 49, 11062
- [6] a) Y. Kobayashi, et al., Nat. Mater. 2012, 11, 507; b) T. Sakaguchi, et al., Inorg. Chem. 2012, 51, 11371.
- [7] C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, H. Kageyama, *Angew. Chem. Int. Ed.* 2014, 53, 10377; *Angew. Chem.* 2014, 126, 10545.
- [8] J. Bang, et al., J. Am. Chem. Soc. 2014, 136, 7221.
- [9] F. D. Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, M. A. Hayward, *Angew. Chem. Int. Ed.* **2014**, *53*, 7556; *Angew. Chem.* **2014**, *126*, 7686.
- [10] G. Bouilly, et al., Chem. Mater. 2012, 27, 6354.
- [11] C. A. Bridges, F. Fernandez-Alonso, J. P. Goff, M. J. Rosseinsky, Adv. Mater. 2006, 18, 3304.
- [12] H. J. Kitchen, I. Saratovsky, M. A. Hayward, *Dalton Trans.* 2010, 39, 6098–6105.
- [13] D. Senff, et al., Phys. Rev. B 2005, 71, 024425.
- [14] T. Yamamoto, H. Kageyama, Chem. Lett. 2013, 42, 946.
- [15] E. Dixon, J. Hadermann, S. Ramos, A. L. Goodwin, M. A. Hayward, J. Am. Chem. Soc. 2011, 133, 18397.
- [16] J. Hadermann, A. M. Abakumov, J. J. Adkin, M. A. Hayward, J. Am. Chem. Soc. 2009, 131, 10598.
- [17] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 1977, 49, 435.
- [18] a) K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga, A. Ito, *Phys. Rev. Lett.* **1988**, *61*, 754; b) J. Souletie, J. L. Tholence, *Phys. Rev. B* **1985**, *32*, 516.
- [19] J. B. Goodenough, Magnetism and the Chemical Bond, Wiley, New York, 1963.
- [20] C. Tassel, et al., Angew. Chem. Int. Ed. 2014, 54, 516.

GDCh

Communications

- [21] A. M. Arévalo-López, J. P. Attfield, Phys. Rev. B 2013, 88, 104416.
- [22] a) J. Oro-Sole, L. Clark, W. Bonin, J. P. Attfield, A. Fuertes, *Chem. Commun.* 2013, 49, 2430; b) J. P. Attfield, *Cryst. Growth Des.* 2013, 13, 4623; c) A. Fuertes, *Inorg. Chem.* 2006, 45, 9640; d) J. Oro-Sole, et al., *J. Mater. Chem. C* 2014, 2, 2212; e) M. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, J. P. Attfield, *Nat. Chem.* 2011, 3, 47.
- [23] G. Tobías, D. Beltrán-Porter, O. I. Lebedev, G. Van Tendeloo, J. Rodríguez-Carvajal, A. Fuertes, *Inorg. Chem.* 2004, 43, 8010.
- [24] Y. Tsujimoto, et al., Chem. Commun. 2011, 47, 3263.
- [25] Y. Tsujimoto, K. Yamaura, T. Uchikoshi, *Inorg. Chem.* 2013, 52, 10211
- [26] a) S. J. Clarke, K. A. Hardstone, C. W. Michie, M. J. Rosseinsky, Chem. Mater. 2002, 14, 2664; b) N. Diot, R. Marchand, J. Haines, J. M. Léger, P. Macaudière, S. Hull, J. Solid State Chem. 1999, 146, 390
- [27] R. Marchand, R. Pastuszak, Y. Laurent, G. Roult, Rev. Chem. Miner. 1982, 19, 684.
- [28] L. Pauling, J. Am. Chem. Soc. 1929, 51, 1010.

Received: May 25, 2016 Published online: June 29, 2016